ABSTRACTS

EVAPORATION OF METHANOL IN AN IRRIGATED
TUBE UNDER SMALL HEAT LOADS

V. A. Bessonov, B. I. Konobeev, UDC 536.24.536.423.1
and N. A. Grinevich*

The authors analyze the process of methanol evaporation and heating when film of this substance
flows downward along a vertical tube under a small heat load (q = 8000 W/m?). The tests were performed
in 2 quartz column with an inside diameter of 0.0145 m and a height of 0.4 m. The irrigation intensity was
varied from 0.0025 to 0.15 kg /m -sec. The Reynolds number varied from 50 to 2000. Ethyl alcohol, tri-
chloroethylene, and isopropyl alcohol vapors were used as the heat carrier.

The values of the heat transfer coefficient obtained here for methanol during evaporation were close
to those corresponding to boiling in a large vessel or in a tube, but were much lower than those correspond-
ing to condensation. The heat transfer coefficient as a function of the irrigation intensity first drops dis-
tinctlyto a certain minimum. At a Reynolds number above 400, the heat transfer coefficient as a function
of the irrigation intensity and of other parameters is described by an equation analogous to the McAdams
equation for free laminar flow downward — but with the coefficient 0.9 instead of 0.67.

On the same apparatus the authors also tested the heating of methanol under conditions of free down-
ward flow. Methanol vapor was used as the heat carrier, The heat transfer coefficient could be cal-
culated from the measured temperature profiles of the film along the column height. Calculations accord-
ing to McAdams agree closely with the test resulis. The minimum on the curve of heat transfer coefficient
versus irrigation intensity does not pass through a minimum but, instead, follows a trend similar to that
for the case of methanol boiling under a small heat load. The heat transfer rate during evaporation is 35%
higher than during heating. These observations lead to the conclusion that, under a small heat load, the
mechanism of heat transfer in an evaporator with a downward flowing liquid film is more similar to the
mechanism of convective heat transfer than to the mechanism of film condensaticn.

It is also concluded here that vapor generation at the tube walls, rather than wave generation, has
some turbulizing effect on the process of heat transfer during evaporation of methanol.

INFRARED HEATING OF THE HEARTH GRATING AND
OF DOUGH LOAVES IN THE FIRST STAGE OF A
TUNNEL OVEN

A. A, Mikhelev and M. M. Dvortsinf UDC 664.655.041.001.5

The article deals with the heating of the spiral-rod hearth grating and of dough loaves under a con-
stant density of thermal flux supplied by an infrared radiation source underneath.

*Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, p. 542, March, 1973, Originalarticle
submitted January 10, 1972;abstract submitted July 25, 1972.

¥Translated from Inzhenerno~Fizicheskii Zhurnal, Vol. 24, No, 3, pp. 542-544, March, 1973. Original
article submitted April 15, 1972; abstract submitted August 25, 1972.
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With typical thermophysical properties of a dough during the initial stage of baking, and with typical
structural features of the hearth grating, the heating of one grating wire and of the dough lying on it is
treated here as a one-dimensional problem in heat transfer involving a finite-size and a semiinfinitely
large body.

The expressions for the temperature of wire and dough as well as for the ratio of heat absorbed by
the dough to heat received by the radiation-sensitive surface of a wire are;
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The energy radiated toward the grating is absorbed by the wire and by the dough loaves, but part of
it is dissipated into the ambient medium.

The following ratios are useful for calculating the heat transfer within the first stage of a tunnel oven
with infrared radiation sources:
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Calculated values agree closely enough with test data,

NOTATION

q is the thermal flux at plane x = (;

dim is the energy flux radiated from the reference surface 1 toward dough loaves and wires of the
immersed grating segments;

¢y is the energy flux radiated from surface 1 toward wires of the free grating segments and to
the ambient medium through gaps in the grating;

Qi-trq is the thermal flux transmitted through the radiation-sensitive surface of immersed grating
wires;

ar is the thermal fiux transmitted through the radiation-sensitive portion of the lower dough loaf
surfaces;

A7 _tr 4 is the thermal flux transmitted through the contact surface between wires and dough loaves;
is the quantity of energy received by the radiation-sensitive surface of a wire;

Qy is the quantity of energy received by the dough;

Yp.2 is the thermal flux radiated from surface 1 and expended on heating the wires in the upper
layer of the grating free of dough loaves;

dy is the thermal flux transmitted through the active cross section of the upper grating layer
free of dough loaves;

T is the time;

b4 is the space coordinate;

R is the wire thickness;

Ty is the initial wire temperature;

T is the initial dough temperature;

Ty(x, 7) is the wire temperature at a point x; at a time 7;

Tyx, 7) ig the dough temperature at a point x; at a time 7;

a, a is the thermal diffusivity of metal and dough respectively;

b is the constant, proportional to the temperature at the loaf surface;
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m is the power exponent;
£try, &ro &ry are the referred emissivity of systems participating in the heat transfer and consisting
of surface 1, the wire and load surfaces, and the medium in plane 2;

kg is the hearth loading factor;
f is the free cross section in plane 2;
AL Ay is the thermal conductivity of metal and dough respectively.

THERMAL CONDUCTIVITY AND ELECTRICAL
RESISTIVITY OF TITANIUM MEASURED BY
THE KOHLRAUSCH METHOD OVER THE
400-1100°K TEMPERATURE RANGE

N. A. Nikol'skii and R. I. Pepinov UDC 536.2

Both the thermal conductivity and the electrical resistivity of 99.7% pure titanium were measured
under 10”4 mm Hg vacuum. The specimen, 120 mm long and 5 mm in diameter, was soldered to copper
terminals and fastened between electrodes with water cooling to a constant temperature, The specimen
was enclosed inside a molybdenum shielding tube 8/7 mm in diameter. The ends of this shield were
soldered to water-cooled copper flanges. Thermal flux leakage from the lateral surface of the specimen
was overcome by holding the temperatures at facing one another points of the specimen and the shield
equal along the active specimen length. Such a compensation was achieved by a separate regulation of
the alternating electric current through the specimen, the shield, and the center heater. According to
calculations, an approximately 1 mm wide gap between specimen and shield reduced to a negligible level
any heat loss due fo radiation. The apparatus had been designed so as to allow for free expansion of both
specimen and shield during heating. The temperature was measured with Chromel—Alumel thermo-
couples., The thermocouple electrodes were used also for measuring the voltage drop along the active
specimen segment (I =15 mm). This voltage drop was measured by the compensation method with a
model R-56 ac potentiometer. The thermal conductivity was then determined from the Kohlrausch for-
mula, The accuracy of measurements was estimated, indicating a 2-3% mean error in the thermal con-
ductivity, a 1% error in the electrical resistivity, and a 2-3% error in the Lorentz function.

According to the authors' data, the thermal conductivity of titanium is 20.5 W/m *°C at T = 400°K
and then decreases slightly (by approximately 5%) over the 400-1100°K temperature range. The results of
this study concerning the temperature characteristic of electrical resistivity of titaniuim agree closely with
published data, The subsequently calculated value of the Lorentz function for titanium exceeds its theo-
retical value by 30-35% and decreases with the temperature from L = 3.4-107% (W/°C)? at T = 400°K to L
=3.2-10"% (W/°C)? at 1100°K.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, p. 544, March, 1973. Original
article submitted October 20, 1971; abstract submitted July 5, 1972.
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AVERAGED CHARACTERISTICS OF A
WHIRLED STREAM

F. F. Kulabukhov, V. G. Pravdin, UDC 532.55
and M. F. Mikhalev*

The authors describe a whirled stream by resolving the flow of a characteristic fluid element into two
components: circular motion in the force field N at some angular velocity and motion of the curl center
along the pipe axis in the force field M.

A relation is established between the whirling force N, the stream parameters, and the turbulizer
design parameters. It is shown that the quantity
ps(Ri+ R o

4R?
equal to the ratio of the principal momentum in the turbulizer ducts to the pipe radius squared may serve
ag the criterial whirl parameter,

N = (1)

A formula is derived for calculating the hydraulic drag of axially symmetrical blade-type turbulizers:

ps (R + REPVE
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32 Rt [*: (R? — Rg) —nab)2 sin? @

(2)

Relation (2) has been verified experimentally in turbulizers of various designs for velocities ranging
from 10 to 35 m /sec. The agreement between calculated and measured values of the hydraulic dra~ in
multiturn blade-type turbulizers appears satisfactory.

NOTATION
R, is the pipe radius;
R, is the radius of turbulizer hub;
n is the number of turbulizer turns;
a,b are the height and width of turbulizer blade;
Q@ is the pitch angle;
w is the angular velocity;
Pg is the gas density under standard conditions;
Vs is the gas flow rate under standard conditions.

STEADY-STATE OVERLOAD CAPACITY OF THYRISTORS
IN A STRUCTURE OVERHEATED BECAUSE OF
INCOMPLETE CONDUCTION

Yu. A, Chesnokovt UDC 621.3.032:536. 4

Under specific conditions, the structure of a thyristor may conduct direct electric current non-~
uniformly. This may be caused by inhomogeneities (constructional, technological, and physical) of the

*Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, pp. 544-545, March, 1973. Original
article submitted March 14, 1972; abstract submitted August 25, 1972,

+V. 1. Lenin Institute of Electrical Engineering, Moscow. Translated from Inzhenerno-Fizicheskii Zhur-
nal, Vol. 24, No. 3, p. 545, March, 1973. Originalarticle submitted January 10, 1972; abstract sub~
mitted June 19, 1972.
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structure itself, a low quality of contact tabs (burrs and pits due fo treatment), or the particular conditions
of the converter operation (e.g., at higher frequencies).

The two-dimensional linear equation of steady-state heat conduction is solved on an analog R-net-
work, whereupon a relation is derived between the steady-state thermal resistance of a TT-2 thyristor
with impressed contact tabs and the area of the annular local conduction zone in the structure — when the
latter varies from 5 to 100% of the active structure area. This relation is accurately enough represented
by a formula where the thermal resiastance is inversely proportional to the square root of the area of the
local conduction zone. Solutions are obtained for a thyristor operating with bilateral and with unilateral
cooling, A method is proposed for estimating the superheat in the structure af any radial coordinate point
when the heat is not completely conducted away. It has been demonstrated experimentally that the residual
electrical resistance of a thyristor is inversely proportional to the area of the local conduction zone in
the structure. The dependence of the device on the area of the local conduction zone is used for estimat-
ing the overload capacity of a thyristor.

SOLIDIFICATION OF A CONDENSED METAL FILM
DURING THERMAL EVAPORATION
UNDER VACUUM

G. 8. Antonova UDC 536.425.539.234

Studies concerning the structural characteristics of metallic condensate films which form during
thermal evaporation under vacuum and studies of transient temperature fields in semiconductor films
yield much useful information about both processes,

Meanwhile, the pattern of condensation of metal vapor on a cooled substrate — a process charac-
terized by a change of the aggregate state — can be explained fully only if changes occurring in the process
are taken into account.

In analyzing the process of heat transfer from a metal film on a neutral substrate, therefore, it is
appropriate to consider the changes of the aggregate state of the film in the sequence: vapor to liquid and
liquid to solid. Such a sequence may properly be assumed for determining the deposition parameters (at
the evaporation temperature Te and the substrate temperature Tp): Te = Tg and Ty, ~ 0,33Tg, with Tg de-
noting the solidification point of 2 given metal,

The problem of film solidification is formulated as a problem of coupling two temperature fields T,
= TeaTg of the not yet solid film and T, = Ty, + (Tg—T},)X/§ of the already solid film, with a special bound-
ary condition given at the moving interface § between zones,

With functions T, (X, 7) and T,(X, 7) which satisfy the initial and the boundary conditions of the given
problem as well as the differential equation of heat conduction, it is possible to solve the nonlinear equa-
tion of the moving interphase boundary between the already solid and the not yet solid zone, then to find
expressions for the proportionality factor g% = £ /T which characterizes the velocity of the solidification
front and thus constitutes a measure of the solidification rate, and also to determine the velocity v = d£
/dr of the solidification front in the condensate film,

One can determine the numerical values of £/7 and v while calculating the heat of phase transforma-
tion r removed from the molecular stream of metal vapor (at a constant volume) as a result of cooling
down to the substrate temperature: r = ¢y(To—Ty) with ¢y denoting the specific heat of the given metal
vapor.

Translated from Inzhenerno- Fizicheskii Zhurnal, Vol. 24, No. 3, p. 546, March, 1973. Original
article submitted April 4, 1972; abstract submitted August 31, 1972.
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The study has shown:

an agreement between calculated values of £/7, which measures the cooling rate of condensed metal
films, and the values of thermal diffusivity o for the respective metals (which measures their cooling rate),
which confirms the validity of the original problem formulation;

an agreement between the values of the fusion heat r* of bulk metal and calculated values r, which
indicates that the internal energy of phase transformation during film solidification may be expressed as
the change in internal energy per unit mass of vapor during cooling on a substrate;

a decrease inthe solidification rate v of condensed metal films with 2 rise in the boiling point of metal
vapor, within the range of relevant groups of metals (light, refractory, etc.) in the Periodic Table,

CALCULATING THE TEMPERATURE
CHARACTERISTICS OF
HIGH-CURRENT THERMISTORS

V. V. Popivnenko UDC 621.316.86.001.24

A study was made of high-current semiconductor thermistors with often complex geometries, a large
mass (up to 12,5 g), wide ranges of temperature variation (up to 750°K), massive contact tabs, and other
distinguishing features (not found in low-power semiconductor thermistors), the results of these studies
indicating that the thermal capacity C, the power dissipation P, the static and the dynamic dissipation
factors kgt and kqyy, the electrical and the thermal time constants 74 and T, and also the dynamic per-
formance coefficiént D of 2 high~current semiconductor thermistor depend largely on its temperature. For
calculating the steady-state and the transient performance modes of 2 circuit with high-current semicon-
ductor thermistors, therefore, one must know not the thermistor constants and parameters but their tem-
perature characteristics C = {(6), P, = £(6), kgt = £(9), kqyn =£(0), 7g=1(6), Te =1(6), and D = £(0) (¢
denoting the superheat temperature of the semiconductor thermistor).

Calculation of the P, = f(6) and the kgt = f(6) characteristics is based on tests and thus accounts for
all energy processes occurring in a semiconductor thermistor, and calculation of its static volt-ampere
characteristic accounts for the conditions of heat transfer.

It is suggested that the C = f(6) characteristic be calculated from static and dynamic volt-ampere
data as well as from oscillograms of current as a function of time i = f(t), without the need for inter-
mediate graphicoanalytical transformations.

The heat capacity of a4 semiconductor thermistor is a function of the specific heat of the specimen
material and of its mass (the specific heat is a function of the temperature), while the dissipation factor
kgt depends on the geometry, the size, the temperature, and the spatial orientation of the device as well
as on the thermodynamic properties and the state of the ambient medium,. The studies have shown that
dimensional and mass variances from nominal values in a large~scale production of a specific type semi-
conductor thermistor are insignificant (less than 4%), while points on kgt = £(8), Py =1(6), and C =1{(6)
curves for specimens of various ratings are dispersed from the mean curves by not more than 5%. These
curves are averaged temperature characteristics of given types of semiconductor thermistors, necessary
for the determination of their kqyn = £(6), 74 =1(6), 7o =1(f), and D = £(¢) characteristics.

Translated from Inzhenerno- Fizicheskii Zhurnal, Vol. 24, No. 3, pp. 546-547, March, 1973. Origi-
nal article submitted March 10, 1970; abstract submitted July 25, 1972.
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The formulas given here for calculating these characteristics apply to any type of semiconductor
thermistors, In many cases such as, for example, high-current semiconductor thermistors of the "honey-
comb" construction the most often used kgt = £(6), kqyn = £(0), and C = f(#) characteristics can be ex-
pressed in analytical form and thus in a form suitable for automated computer-aided design procedures.

An analysis of the results has shown that the temperature characteristics of high-current semicon-
ductor thermistors operating under a heavy load vary over wide ranges. When temperature 6 changes
from 50 to 450°K, for example, the value of kgt becomes 1.9 higher, the value of kgyn becomes 2.7 times
higher, and the value of C becomes 3.0 times higher in the case of a "honeycomb" semiconductor ther-
mistor,

Knowing the temperature characteristic of a semiconductor thermistor, one can not only quickly,
simply, and rather accurately calculate its steady-state temperature but also refine the transient calcula-
tions for circuits with semiconductor thermistors.

TEMPERATURE FIELD OF THE STATOR OF
AN ENCLOSED AND FINNED INDUCTION
MOTOR WITH ASYMMETRICAL COOLING

A. I. Borisenko, I. I. Mosina, UDC 621.313.04.1
T. N. Travkina, and A. I, Yakovlev

The article deals with the temperature profile of a stator section underneath its finned housing. The
core is subdivided into two zones (Fig. 1): the yoke or zone 1 and the slotted core (teeth and coils) or zone
2. The temperature Ti(r, @) in these zones is described by the Poisson equation in cylindrical coordi-
nates;

v 0 ( 9 L &7y ( 0 ) ,
& o el =—(—] =1, 2.
r o (' ar )+r2 ag* r ), ¢ )
The boundary conditions are: convective heat transfer (0 = ¢ = ¢)
oT, ’
-k — =a S, (T,—T ;
stadr |r=R, S af fm( f ) =R,

thermal flux through the base between feet (¢; = ¢ = 7)

a7y o
T or Je—r, ¥
thermal flux from rotor to stator through the airgap
aT.
- 7‘sta ar2 r=R3= &2
The condition of symmetry with respect to the 00, axis is
Oy O,
99 ]¢=0 T 09 lg=a

Continuity of the temperature function and of the thermal flux function at r = R, is expressed as

Ty

Ry, 9),

oT
Ty Ry, @) =Tz (Re, @) 5= (Re, @) =% (R

T ranslated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, pp. 547-549, March, 1973. Origi-
nal article submitted March 31, 1971; abstract submitted August 31, 1972.
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Fig. 1. Schematic diagram of a stator section
and its temperature profile, for a model A4~
100L4 electric motor. Numbers at the curves
denote temperatures in °C.

with the area of the heat emitting core surface 8,, the surface of fins Sy, the coefficient of heat transfer
between fins «f, the fin temperature at the root Ty, the ambient air temperature Ty, the density of ther-
mal flux from core through base g,, the density of thermal] flux from rotor to stator g,, and

(L) =B,

LA 1 hgs

Here p; denotes the specific losses in the stator yoke region and Agga denotes the thermal conductivity along
the stack

& in the stator teeth region;
/ 0 \ }‘Sta
()
A
2 pey in the stator yoke region,
Acu

with the specific losses in the stator teeth region p,, the specific stator copper losses poy, and the ther-
mal conductivity of copper Aqy,.

The problem is solved by the Fourier method of separating the variables. In order to determine the
integration constants, from the boundary condition the authors derive an infinite system of equations which
is then solved by successive approximations. The temperature field of the stator of a model A4-100L4
electric motor is shown in Fig. 1.

SOME CONCEPTS IN THE THEORY OF
THERMAL CIRCUITS

Yu. A. Gavrilov UDC 536.21

In order to find approximate solutions to problems of heat transfer within a system of bodies, one
often makes assumptions which allow the temperature field of each body to be considered uniform or vari-
able in one direction only. In such cases the system of bodies may be treated as a thermal circuit and
represented graphically by an equivalent circuit diagram, Thermal circuits without active elements but
consisting of thermal resistances and conductances only have been described in the technical literature

Institute of Precision Mechanics and Optics, Leningrad. Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol, 24, No. 3, p. 549, March, 1973. Original article submitted January 20, 1972; abstract sub-
mitted June 19, 1972.
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1, 2]. The boundary conditions of a problem and the presence of either heat sources or heat sinks may

be represented by active circuit elements in the form of temperature or thermal flux sources. The proper-
ties of and the symbols for these elements are analogous to those of and for conventional voltage and cur-
rent sources in electrical circuit diagrams. The physical analog of an active element in a linear thermal
circuit would be an ideal heat pump which maintains a stipulated temperature difference or thermal flux
level regardless of the load. The effect of a heat carrier on the temperature of bodies can be accounted
for by a resistance whose reciprocal value is proportional to the product of thermal capacity and mass flow
rate of the heat carrier. For a transient process, furthermore, the thermal circuit must contain thermal
capacities analogous to electrical capacitances in electrical circuits.

Thermal circuits can be analyzed by methods and laws derived in the electrical circuit theory (theo-
rem of variations, method of the equivalent source, complex~numbers notation of quasisteady process
quantities, trend toward automated computer-aided designs, etc.). The validity of this approach can be
demonstrated if the laws of Fourier, Newton—Riechmann, Stefan-Boltzmann, and energy conservation
are expressed in a form analogous to Chm's and Kirchhoff's laws for electric circuits, and if an open
thermal system can be transformed into 2 closed one. In order to apply the methods, the formulas, and
the ready solutions from circuit theory to thermal circuits, it is sufficient to replace currents, voltages,
electrical resistances and capacitances by their respective thermal analogs. Moreover, the inductance
as well as the power of active elements and the heat dissipated in resistances are all assumed equal to
zero,

LITERATURE CITED

1. G. N.’ Dul'nev and £, M. Semyashkin, Heat Transfer in Radioelectronic Apparatus [in Russian],
Izd, Energiya (1968).
2. G. N. Dul'nev and N. N. Tarnovskii, Thermal Operating Modes in Electronic Apparatus [in Rus-

sian], Izd. Energiya (1971).

APPLICATION OF THE EXPANSION THEOREM
TO THE DETERMINATION OF THE
TEMPERATURE IN MULTILAYER BODIES

M. I. Dubovis

A solution is obtained to the equation of heat conduction

aT; . (azri + «dT;
ar? ror

L = )+, (1)

where w =0, 1, 2. The initial temperature of each layer is constant, The boundary conditions at the out-
side surfaces are of the third kind, functions of time. Conditions of the first and of the second kind re-
present special cases. Perfect contact conditions are assumed at the inside boundary surfaces. A Laplace
transformation of Eq. (1) into an ordinary differential equation is performed and the solution to the latter
is found as a linear combination of two eigenfunctions. The arbitrary constants are determined from a
system of linear equations corresponding to the boundary conditions for the layers. The original function
is found in the form of a series of residues at the poles, If the transforms of the given functions are not
fractional-rational, then one also uses the Convolution Theorem. Discussed are problems involving the
application of the Expansion Theorem to the solution of this problem. Shown are two forms of the solution

Translated from mzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, pp. 549-550, March, 1973. Origi-
nal article submitted May 19, 1971; abstract submitted August 25, 1972,
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in transforms, the rule of reducing the characteristic determinant and the particular determinants to a
power series, the rule for writing in complete form the elements of the characteristic determinant and, in
the case of an infinitely large plate, the rule for writing in complete form the determinant elements ob-
tained by the first differentiation of the characteristic determinant, also a calculation scheme is shown in
which the characteristic determinant and the particular determinants are expressed as sums of products
of second-order determinants, and formulas are derived for calculating the first terms (coefficients) of
power series which represent those determinants. These coefficients are then used in calculations for
determining the order of the zero pole of the solution-transform. A relation is established between the
zero pole and the kind of boundary conditions., As an example, calculations are shown (in general form)
with a double zero pole.

ONE APPROXIMATE SOLUTION TO THE
SOLIDIFICATION PROBLEM

V. I. Lozgachev UDC 536.421.4

When a melt is bounded by an isothermal plane and the solidification front propagates inward in the
direction normal to that plane, then the thickness of the solidified layer is a following function of time;

y =BV ®
with constant 8 determined from the well known relation in [1].

Formula (1) is valid for a constant amount of subcooling rg. We now find an expression for y when
the amount of subcooling is given as a certain function of time rg = £(t) at a conStant superheat of the melt.

Let the following jumps in the amount of subcooling at the boundary plane rg; < rg, < . . .< rgp occur
consecutively within respective time intervals At;, At,, ..., At,. We assume that the corresponding
smoothing of the temperature curves according to formula (1) is effected by those jumps without any inertia,
and that then At; will represent exactly the buildup time of a solid layer under the condition rg;. Conse-
quently,

Aty e Aly 4 ooe o Al =t (2)
and formula (1) will apply to every segment,

The thickness of a built up layer after n jumps is, according to formula (1),

91,2, ..., n =B Vi - Al {3)
with t,_; denoting some fictitious buildup time of layer Yi,2, ..., n-1 28 if condition g, prevailed all the
time,

Analogously, we can write
91,9, entt = Bnnd Vi, & Al (4

When Aty 4 =0, then evidently y, =y .- Ecquating (3) and (4) at Aty |, =0 yields recurrence rela-
tions for the fictitious time t:

Br ‘ Brt ‘
tp = a2 (thy — Alp), fpoy = T2 (tn-g + Afgg)s oo
6!1—}-1 ﬁn

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, pp. 550-551, March, 1973. Origi-
nal article submitted October 11, 1971; abstract submitted July 10, 1972.
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Inserting the thus obtained values of t, ,, t;, 5, ..., consecutively yields, in the final analysis,

th= E}f E ﬁ?Ati.
)
Inserting this into formula (3), we find

[ n
y =
" ‘/Zﬂ%Ati
1

or, inasmuch as an infegral sum is under the square-root here, at the limit Atj — 0 formula (2) yields

finally
S
yw=y/fwmm.' (5)
0

The relation 8 = {(1) is determined according to the formula in [1] for a given function rg(t). For in-
stance, for small values of 8 we have

s
B =~ @),

Expression (5) is valid for any 8 within the indicated accuracy. Formula (5) is valid also when the
melt is not superheated (r; = 0). For this case an equation has been derived in {2] which relates rg(t) to
y(t) at any time, If the value for y(t) from formula (5) is inserted into this equation, for small values of
y, then the expression for 8 in [1] (in the form of a series) is obtained with r; = 0. For instance, ‘with
small values of § the formula for 8 in [1] yields when r; = 0:

Y
= 7 ¥V rs.

Letting rg = ktn, moreover, we obtain from formula (5)
2kd, L
§Pr=— .

= P
Inserting these values of rg and y? into the Lyubov formula, we obtain an identity at small values of t.

LITERATURE CITED

1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Moscow
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PECULIARITIES OF TEMPERATURE CALCULATIONS
IN THE THEORY OF ULTRASONIC WELDING

V. F. Apanasenko UDC 621.791

For calculating the temperature field of a polymer welded ultrasonically, a mathematical model has
been developed which describes the effect of ultrasonicvibrations on the plastic mass and which is based on

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, p. 552, March, 1973. Original
article submitted November 24, 1971; abstract submitted July 21, 1972.
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the Rzhevkin representation [1]. According o this model, directional ultrasonic radiation is treated as a
tgound beam" emitted from a unique "horn. "

Pursuing this geometrical approach, we assume that the "beam" is made up of tubes 0.1 in diam~
eter, with A denoting the wavelength of longitudinal vibrations in the welded polymer. This makes it feasi-
ble to apply here the acoustics problem of a finite-length tube segment [1] and thus to take into account the
finite dimensions of the welded package. In solving the problem, one calculates the acoustic pressure
along a tube. With the acoustic pressures given at the entrance to the tubes, corresponding to the wave
radiation function along a spout radius, it becomes possible to determine the acoustic pressure field of
the section plane within the sound zone,

From the acoustic pressure we calculate the energy of the ultrasonic field at a sepcific point. This
energy is then multiplied by the ultrasonic absorptivity and this yields the energy lost on heating the poly-
mer and on irreversible deformations in it, Assuming that the heat released in the polymer by ultrasonic
vibrations is maximum during resonance between thermal and acoustic waves at frequencies which are
harmonics of the operating ultrasonic frequency, we then determine the energy lost on heating. This quan-
tity is found, according to the Zener theory {2], as the product of the total energy absorbed in the polymer
and the loss factor, From the heating energy thus determined, we can easily calculate the temperature
change at the specific point,

The variation in the temperature field of polysiyrene during ultrasonic welding was calculated on a
#"Nairi* computer and compared with temperature measurements made with model LEPP-09 electronic
potentiometers, The difference between theoretical and experimental thermograms amounted to 5-7%
in the time and 3-19% in the location of a specific point,

Thus, the problem of sound propagation along a finite-length tube segment and the Zener theory are
both applicabie for rough theoretical calculations of the temperature field.
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CHARACTERISTICS OF HEAT REGENERATORS WITH
THE GAS PRESSURE VARYING IN TIME

I. M. Shnaid UDC 536.27

The most characteristic feature of the process in Stirling and Ericson regenerative heating and re~
frigerating engines with a pulsation tube and similar devices operating on an unsteady flow of the working
medium is that the gas pressure varies in time. The classical Nusselt—Gausen theory of a heat regen-
erator is not applicable under such conditions, because the number of differential equations describing the
mathematical model of a regenerator increases and they become more complex:
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Most interesting are those solutions fo system (1)-(3) which do not depend on the initial conditions
and are periodic in time, corresponding to the steady-state operation of a regenerator. The approximate
periodic solutions are sought in the form

T (%, ) = Ty (x) + T (x) sin ot + T, (x) cos f, (4)
Ty (xy 1) = Tye (£) +— Typs (%) sin of -} Ty, (x) cos of, (5)
Gm (%, 1) == Gums (x) sin @F - g (x) cos . (6)
with the assumption that
P =: pp+ pssin of. (7

Relations (4)-(6) represent the simplest functions of the variables x and t, automatically satisfying
the condition of periodicity in t. An analysis of the solutions based on these relations will reveal the most
characteristic features of the process in heat regenerators with a variable-pressure gas flow.

In order to determine the coefficients in Eqs. (4)-(6), the author uses the variational method of
"least squares" and thus ensures the best "overall" accuracy of the sought approximate solution,

The obtained solution is in satisfactory agreement with test data. On this basis, then, the author
examines how the regenerator efficiency depends on its design parameters and on the phase relations be-
tween temperature, pressure, and flow rate,

It is shown that pressure fluctuations in the gas stream have an appreciable effect on the regenerator
characteristics. If the gas pressure and the gas flow rate are in phase opposition, for example, then at
the nhotter" end of the regenerator the gas leaving will be at a higher temp erature than the gas entering
through the same section.

NOTATION

is the space coordinate along the regenerator;

is the time;

is the gas pressure;

is the gas temperature;

is the mass flow rate through a given regenerator section;
is the temperature of regenerator head;

is the adiabatic exponent;

is the specific heat at constant pressure;

is the constant;

is the passage section in the regenerator;

is the heat transfer coefficient;

is the heat transfer surface of a regenerator head;
is the volume of gas in the regenerator;

is the volume of a regenerator head;

is the density of a regenerator head;

is the specific heat of a regenerator head;

T is the period;

w = 2n/T is the angular frequency.
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SOLUTION OF CERTAIN REVERSE PROBLEMS
IN IGNITION THEORY

A, M. Grishin UDC 533.6.011.8

Solving the problem of heterogeneous ignition at the interface between two half-spaces filled with fuel
and oxidizer respectively [1] and solving the problem of ignition of a reactive body in the shape of a plate
[2] or of a solid of revolution [3] near the stagnation point in 2 stream of hot oxidizer reduces to solving
nonlinear integral equations of the Volterra kind:

v
i " ©w [0 ()] dt
0, = Puw [Ow ()] , i
“ Vad V1—- =7 ()

0
with A =1 + K in the first problem and A = K, in the other problems, with ¢y, denoting the intensity of
nonlinear heat sources at the surface due to heat generated by heterogeneous chemical reactions, and with
the other symbols here the same as in [2].

The solution to the problem of homogeneous ignition of a reactive condensate by a constant thermal
flux [3] can also be reduced to an equation of the Volterra kind (1).

The reverse problem of ignition corresponding to these several cases here is formulated as follows:
to find the intensity of nonlinear surface sources ¢y, which will make the dimensionless temperature 9y(7)
rise according to any stipulated law.

It is quite evident that Eq. (1) with respect to ¢, represents the Abel equation in [4], whose solution
yields

T
A d(p B(ar 9
P = vV dr((.)s V-1 > (2)
If the right-hand side of Eq. (2) is considered known at 0 =7 =< 7, from tests, then, assuming the
rate of the chemical reaction to follow the Arrhenius Law and using two values for the right-hand side,
one obtains a system of two equations for determining E and gk,. Considering then that one first-order
heterogeneous reaction occurs and that little reagent has burned out at time 0 <t < t,, one finds:

RT 1y Tupe In Pruwrfaw

E =
Two—Tun Owsf1w

Tty Jber ], (3)

, gkot = frw €x {
GRoCePun 1w €XP To—T ot Frapwr

Analogous formulas for E and gk, are obtained also for a2 homogeneous ignition of the reagent,

The effective values of kinetic constants can be found also by minimizing the functional

ts

E
— 2 — ey 4
1,6\ [ (6) —qUEdt, U =hopcexp— = {4)

for v = 1 with the proper choice of E and gk;.

NOTATION
Ty is the dimensionless ignition time;
y is the real ignition time;
R is the wuniversal gas constant;
E is the energy;
q is the thermal effect of a reaction;
k, is the pre-exponent;
cg is the initial concentration of deficient active gaseous component;
Py is the right-hand side of Eq. (2) in dimensional form;
p is the density;
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v is the order of reaction;
Ton = Twit)), Ty =Tylty, 0 <ty <ty <t,,

Subseript

w refers to the boundary between media.
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